
4 Rotation and Reflection Groups
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Figure 1: The paper triangle. Figure 2: Its axes of reflection.

In the previous section, we started with the dihedral group of the equilateral triangle and discovered it had
six elements: reflections about three different axes, rotations of ±120◦, and the identity transformation. We
identified a subgroup consisting of the identity I with two rotations r and r2, and three other subgroups of just
the identity and a single reflection. The first subgroup—the one consisting of only rotations—is known as the
rotation group of the equilateral triangle, or the cyclic group of order 3, C3.

1. Notice that the original dihedral group had twice as many elements as the rotation group. Why?

2. Make and justify a conjecture extending this observation to the dihedral groups of other shapes like
rectangles, squares, and hexagons, as well as the symmetry group of the cube.

3. Let r be a 180◦ rotation, x be a reflection over the x-axis, and y be a reflection over the y axis. Write
a table for the dihedral group of the rectangle, recalling that the allowed isometries are reflections and
rotations. How does this table differ from the dihedral group of the equilateral triangle?

4. Write a table for the rotation group of the square, with 4 elements and 16 entries. Compare this table to
Problem 3.

We noticed that the rotation group for the equilateral triangle could be generated by just one of the elements,
such as r—rotation by 120◦ counterclockwise. Then r2 is a rotation of 240◦ counterclockwise, and r3 = I,
the identity (see Figure 3). Since we can generate the entire rotation group with a single element (namely, r),
a natural question to ask is whether we can do the same with the dihedral group D3. Clearly, we can’t use the
identity to do it, and a series of rotations always leaves us with a rotation, never a reflection. Also, a series of
flips along one axis simply generates a two-member group with elements I, f (see Figure 4).

Let’s try using two elements to generate our group, using the same definitions of f and r as in the previous
section: a flip over the A axis and rotation by 120◦ counterclockwise, respectively. As we found, fr is a flip
over the B axis and rf is a flip over the C axis. Consecutive powers of r already got us the remaining
elements, so r, f generates the group.

We can also generate the group using two reflections, say f and fB (flip over the B axis, as shown in
Figure 2). Notice that an even number of reflections always results in a rotation—even the identity element
I is just a rotation by 0.1 We can conceptualize this behavior as the existence of a “mirror world” and its
unmirrored counterpart, with each reflection taking us into or out of the mirror world.

Moving into three dimensions, D3 is isomorphic to the set of rotations of an equilateral triangular prism.
The new axes of rotation are coplanar with where the reflection axes used to be (see Figure 5). Indeed,
when you “flipped” your equilateral triangles, you were actually rotating a paper-thin triangular prism in the
third dimension. Truly flipping the triangular prism using a rotation would require four spatial dimensions—
something we cannot easily visualize.

You will next analyze the symmetries of a variety of objects under rotations or reflections. You will no-
tice that the more symmetries an object has, the larger its symmetry group is. Indeed, group theory is the
mathematics of symmetry par excellence.

For each of the following groups, find the following:
1Any reflection group will include rotations, although they may be the identity.
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Figure 3: r generates a three member group. Figure 4: f generates a two member group.

Figure 5: Triangular prism’s corresponding axes of rotation.

(a) The number of elements, is known as the order or cardinality;

(b) If order < 10, name the set of elements; otherwise, explain how you know the order;

(c) A smallest possible generating set; in other words, a list of elements which generate a group;2

(d) Whether the group is commutative; in other words, whether its operation · satisfies X · Y = Y ·X for
all X,Y .

If two problems have isomorphic groups, just write “isomorphic to Problem N” for the latter problem and move
on.

5. Rectangle under rotation

6. Rectangle under reflection

7. Square under rotation

8. Square under reflection

9. Square prism under rotation

10. Square prism under reflection

11. Regular pentagon under rotation

12. Regular pentagon under reflection

13. Regular pentagonal prism under rotation

14. Regular pentagonal prism under reflection

15. Regular pentagonal pyramid under rotation

16. Regular pentagonal pyramid under reflection

17. Regular tetrahedron under rotation

18. Regular tetrahedron under reflection

19. Cube under rotation

20. Cube under reflection

2There may be multiple generating sets of the same size.
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